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q'mere are three atmospheric processes responsible for the degrada-
tion of the transmission of optical images and electro-optical energy:
aerosol extinction, molecular absorption, and turbulent distortion (scin-
tillation and beam wander). As a part of the Marine Aerosol Generation
and Transport experiment (MAGAT-80), light trmissim characteristics
(refractive-~index sttuctut"e function parameter, CNZ, and total ex-
tinction coefficient, a)'vroere measured optically on a 13.3 km path across
Monterey Bay. CNZ and_& :cm;\nalso be calculated from micrometeoro-
logical data (aerosol spectra, turbulence and mean meteorological para-
meters). This report is a compilation of the preliminary analysis of
path—averaged (aircraft) and midpoint (ship) micrometeorological data,
including calculations of the relevant cptical parameters for comparison
with the optical measurements,
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A. INTRODUCTION

Light propagating through the atmosphere is not only scattered and
absorbed by aerosols and molecules, but the wavefronts are deflected and
distorted by turbulence. The evaluation and application of optical,
electro-optical, and laser systems requires reliable data and a tested
physical model of these atmospheric effects.

NPS personnel recently participated in a large-scale field experiment
designed to improve and verify certain overwater models of these atmos-
pheric processes for the U.S. Navy. The experiment, Marine Aerosol
Generation and Transport (MAGAT), was the brainchild of Professors
Kenneth L. Davidson and Gordon E. Schacher of the Environmental Physics
Group at the Naval Postgraduate School (NPS) in Monterey, California.
Other government installations involved in the planning of the experiment
were the Naval Ocean Systems Center and the Naval Environmental Predic—
tion Research Facility. The Electro-Optics/Meteorology (BEO/MET) Program,
the High Energy Laser (HEL) Program, and the Naval Air Systems Command
provided funding for the project. MAGAT was held from April 28 to May 9,
1980, in the vicinity of Monterey Bay.

The first phase of the experiment dealt with the compatibility of
optical and micrometeorological propagation theory. In ocoop:ration with
the NPS Physics Department, Optical Propagation Group, direct measure-—
ments of cptical extinction and scintillation across Monterey Bay were
compared with both marine surface layer model predictions and aerosol and
turbulence data cbtained at the midpoint of the optical path from the
Research Vessel R/V ACANIA. In addition, path averages of aerosols and
turbulence were obtained by flying an instrumented aircraft




the entire length of the 13.3 kilometer optical path at altitudes varying
from 3.5 to 20 meters above the sea surface. The aircraft measurements
were made in cooperation with Airborne Research Associates of Boston,
Massachusetts. This report is a preliminary analysis of the aircraft and
ship measurements for the first phase.

The second phase of the experiment involved an ambitious attempt to
extend dynamic models of the evolving marine atmospheric boundary layer
to include aerosol and turbulence profiles. This phase of the experi-

ment, conducted in a region 30 to S0 nautical miles ‘Off the coast of Mon-

terey, required periocdic monitoring of aerosol and micrometeorological
variables from the surface to 5 kilometers. These duties were shared by

the aircraft and the R/V ACANIA (which utilized various remote sensing
techniques). The analysis of the second phase of the aircraft measure-
ments will be covered in a separate report.
B. BACKGROUND

1. Optical Parameters

The two atmospheric optical properties of primary interest are
total extinction and refractive-index structure function parameter,
CNZ. The extinction has several components: molecular scattering and

absorption (B = 85 + B, and aerosol scattering and absorption (@ = o  +a_).

s
Thus, the extinction parameterizes the loss of light energy as it is
scattered out of the beam or absorbed by the molecular and particulate
constituents of the atmosphere. The distortion and tilt of image wave
fronts by atmospheric turbulence is parameterized by Cy2.

We can write Cy2 as a function of temperature (Cr?) and
water vapor (Co?) turbulence structure function parameters

2

Q- = (19 x 1078 1>/'r2)2(c1,2 +0.113 Gy + 3.2 x 1073 ¢ 2

(1)

q )




where P is the pressure in nb, T the absolute temperature and Cpqg the
temperature-humidity cospectral structure function parameter. CNZ can
be cbtained in three ways: 1) optical measurement, 2) measurement of
Cp?, Cpgr and Cg2, and 3) calculation of Cp?, Cpgs and Cg? from bulk
metecrological data (water temperature, air temperature, humidity and
wind speed).

The total extinction (¢ + 8) can be measured cptically by deter-
mining the reduction in beam intensity over same suitable optical path.
The separate components can be calculated from micrometeorological data.
The molecular extinction can be obtained fram the LOATRAN model developed
by the Air Force Geophysics Laboratory (Selby et. al, 1978). The aerosol
extinction can be calcualted fram the aervsol spectral density, N(r).

~ o= wrrrz E(n,\) N(r) dr (2)
where r is the particle i‘adius, E(n,\) the total scattering efficiency at

wavelength, A, and refractive-index, n.

2. Turbulence Scaling Parameters

Since the details of surface layer scaling are covered in pre-
vious reports (Fairall, et. al., 1980) this discussion will be limited to
a few basic definitions. Near the surface, the height above the surface,
2, can be normalized by the Monin-Obukhov stabiltiy length, L. We can
then represent the micrometeorological properties in terms of scaling
parameters and dimensionless functions of ¢ = Z/L,

qu - T*Z z-2/3 £(£) (3a)

cQ2 = o2 2723 as(e) (3b)
- -2/3 ,1/2

Crg = Tpg T*as2 avé £@) R (3c)

ty

ot e = e e e




where T* and Q* are the temperature and humidity scaling parameters, f(£)
is a dimensionless function (Wyngaard et. al., 1971), rpq is the tem-
perature—~humidity correlation parameter (about 0.8) and A is a constant
(about 0.6).

The rate of dissipation of turbulent kinetic energy, £, can be
similarly represented

3
Up
B 9 (4)

€ =

where u* is the friction velocity and K is Von Karman's constant (0.35).
The scaling length is given by

2
ux

_ T
L= gk (T + 0.61 TQ»/p) (5)

where g is the acceleration of gravity and p is the density of air.
Note that the scaling parameters are related to the surface

fluxes of momentum (T = Reynolds stress), temperature (Qo) and water

vapor (Mo)
T= ou*2 (6a)
Q = ~usTx (éb)
M, = -usQ+ (6¢c)

3. Bulk Parameterization

Although the scaling parameters can be determined from either
direct flux measurements or from measurements of Cp2, Cg2and ¢,
the difficulty of these measurements has led to the development of a
method that utilizes bulk meteorological quantities (wind speed, u, tem—

perature, T, and water vapor density, Q). In this case, the scaling

parameter for X (X = u,T,Q) is cbtained from the difference in X from




the sea surface (X5) to some reference height (usually 10m) in the
atmosphere.
x 10 7 %) )

where c, is the drag cocefficient for x (typically, cx = 1.3 x 10-3
over the ocean). Further details on the bulk method can be found in
Davidson et. al. (1980).

C. INSTRUMENTATION

1. Aerosol
The aerosol spectra were measured with optical particle coun-

ters made by Particle Measurement Systems (PMS) of Boulder, Colorado.
The R/V ACANIA used the standard NPS system consisting of two probes,
the classical scattering (CSAS) and the active scattering (ASAS),
controlled by a DAS-32 with computer interfacing. This system measures
aerosols in 90 size channels from 0.0%9: to 14.0u radius. The aircraft
aercsol data were cbtained using a PMS model ASSAP on loan from NOSC.
This system has 60 size channels from 0.28u to 14.0u radius.

2. Aircraft Meteorology

‘ The aircraft micrometeorological parameters are logged on a
computer controlled (HP9835) twenty channel data acquisition system.
Each parameter is sampled every 2.5 seconds with a two-scan average
stored every S5 seconds. The data is stored on magnetic tape cassette
with a four hour capacity. A brief description of the micrometeoro-
logical data is given in Table 1. Further details on aircraft instrumen-
tation can be found in Fairall (1979).




D. ANALYSIS
l. Aerosol

The aerosol analysis techniques for the ship and aircraft are
basically the same. The N(r) spectrum is calculated for half-hour aver-
ages on the ship and path averages for the aircraft (about 2 minutes).
The spectrum is fit in LOG(N(r)), LOG(r) space with a seventh order poly-
nomial for 0.09%u<r<7u,with a linear fit for >7y. The extinction is cal-
culated using these fits for 0.03u<r<30y on the ship and for O.lp<rc<l5y
for the aircraft. This calculation is discussed in depth in Schacher et.
al. (1980).

The method was developed for the ship system and adapted for
use with the aircraft. Because of the greater statistical scatter in the
N(r) spectrum from the aircraft probe, the polynomial fit is subject to
occasional "instabilities”. Should this occur, the polynomial fit will
bear no resemblance to the N(r) data. Another symptom of this instabil-
ity is the occurrence of large polynomial coefficients. Due to the pre-
liminary nature of this report, the data have been left unedited. The
reader 1is cautioned to use common sense when attempting to use these re-
sults.

The aircraft and ship aerosol extinctions were compared in a
series of flybys. Since the ship system is newer, has a wider range,
better sensitivity and is better understood, we decided to correct the
aircraft extinctions to agree with the ship. The correction factors are

given in Table I1I.




Channel

(V)]

O W J9 o

10
11
12
13
14
15
16
17
18
19

20

TABLE I. Aircraft Meteorological Data

Data Symbol
Pressure P
Temperature T
Tenperature T
Dew Point T4
Sea Surface T Ts
Electric Field E
Refractivity N

Water Vapor Density Q
Air Speed 1$]
Dissipation

N structure funct. Cy?
T structure funct. Cp?
Q structure funct. Cg2

Electrical Conduc~- A
tivity

Sensor
National Semiconductor
Platinum resistor
Vortex (NRL)

Cooled mirror

PRT-5 (IR)

i

Radioactive probe

Microwave cavity (NAC)
Lyman-o, mean (NRL)

Hot wire, mean

Hot wire, fluctuation
Microwave, fluctuation
Microthermal, fluctuation

Lyman~«, fluctuation

Flat plate

I



TABLE II. Ratio of Ship to Aircraft

Extinction Coefficient Values

Wavelength, um Before 5/4/80 After 5/3/80
0.63 3.8 1.8
0.84 5.2 2.0
1.06 7.1 2.5

These factors are based only on the open ocean comparisons. The Monterey
; Bay comparisons were not included so that the ship and aircraft optical

comparisons could be considered independent. The complete set of correc-
tion factors is shown in Fig. l.

2, Micrameteorology

The methods and equations used to obtain the basic parameters
given in Table I have been described in Fairall (1979). Once these
meteorological parameters are in hand, one can calculate the scaling
parameters (Section B2) using either turbulence or bulk quantities. Since
we did not have mean wind speed available for the aircraft, we did bulk
calculations using a hybrid method where the dissipation rate, €, is used to
obtain us (Eq. 4).

3. Optical Data

The optical extinction cefficients, as cbtained from the optics
group, represent total extinction due to aerosols and air molecules. The
molecular components were calculated using LOWIRAN IIIB and subtracted
from the total to leave only the aerovsol extinction. The LOATRAN values
used are given below

Wavelength, um 0.63 0.84 1.03 1.06
; Molecular 8, km~l  0.01 0.04 0.00 0.00
A description of the optical measurements is given by Crittenden et. al.
(1980).
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E. RESULTS

The measurements were made in Monterey Bay along a 13.3 km path from
Pt. Pinos to Marina (Figure 2). The R/V ACANIA was located in the region
indicated by the square. The aircraft made constant altitude passes along
the optical path. Later in the experiment, several passes were made per-
pendicular to the path. The optical comparison was done on turbulence
(CNZ) and extinction (a ). The optical and ship CNZ comparison has
already been reported (Davidson et. al., 1980) so it will not be discussed

here.

l.  Aircraft CNZ Evaluation

The basic aircraft optical path micrometecrological measurements
and bulk calculations of scaling parameters are given in Table IIl. A
more detailed printout is given in Appendix A. The bulk scaling predic-
tions of CNZ (Eq. 3 and Fig. 1) are compared with the turbulence mea-
surements in Fig. 3. These results are similar to those obtained from the

ship measurements (Davidson et. al., 1980).

2. Aircraft Extinction Comparison

A summary of the aircraft optical path extinctions is given in
Appendix B. In Fig. 4 the aircraft aerosol comparison with the optical
measurements is shown. Out of nineteen comparison runs (three wave-~
lengths each) only two disagree by more than a factor of two. For the
aircraft aerosol data, the average ratio of extinction for aerosols wversus

optics is 1.0 + 50%, =40Z.
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Figure 4. Comparison of optically measured extinction coefficient
and aerosol extinction coefficient from aircraft optical
path data.
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3. Ship Extinction Camparison

The ship aerosol measurements were made at anchor along the opti-

cal path or underway within the square indicated in Fig. 2. Selected time

series plots of extinction coefficients are given in Fig. 5a - 5g. Direct !

———— .

comparisons of size spectral and optical extinction values are given in

Figo 6a - ﬁo
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from optical measurements (lines) and aerosol size
spectra (X and 0).

4

8 12 16 20 24
L. CALTIME (hrs)

16




80

|
70

0 4 8

OPTICS AEROSOL

MAGAT- 80

| | | | ]

12 16
LOCAL TIME (hrs)

Figure 5b. Time series plot of aerosol extinctions coefficient
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Figure 5d. Time series plot of aeroso] extinctions coefficient
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spectra (X and 0).
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APPENDIX A

Aircraft bulk meteorology and turbulence data on optical path in Monterey

Bay.

ALT |,
PRES |,
T-ROS,
T-SIR,

T-DEW,

EPS ,
cT2 ,
Q2 ,

EXT ,

Altitude (ft)

Pressure (mb)

Temperature (cent)

Sea surface temperature (cent)

Dew point (cent)

Water vapor mixing ratio (g/Kg)
Turbulence dissipation ratio (m?/sec3)
Temperature structure function (x2/m2/3)
Water vapor structure function (mb2/m2/3)

Aerosol extinction, A = 0.49 (km~1)
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ALT ’
PRES ,
T-ROS ,
T-DEN
oN2r
CN2 '
E(.63) ,
E(.84) ,
E(1.06),

APPENDIX B
Suwnary of aircraft optical measurements in Monterey Bay.

Altitude (£t)

Pressure (mb)

Temperature (cent)

Dew point (cent)

Cp2 component of Cy2 (m=2/3)
Turbulence value af CNZ (m=2/3)
Aerosol extinction (Km~1) at A = 0.63
Rerosol extinction (Km~l) at A = 0.84

Aerosol extinction (Km~l) at A = 1.06
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